
eis

oan

a
i

Ba
si
ns

e
e
s

APPLICATION

TOPPING THE BILL We take a look at
robots at the top end of the market

HARDWARE

OSBORNE ON SHOW The Osborne
Encore is the latest lap-held from the
company that started a revolution in
microcomputing with the first true portable,
the Osborne 1

VERTICAL TAKEOFF An introduction
to a new series on vertical software —
specialised applications written for specific
groups of people like doctors and designers

SPORTING CHANCE Summer Games for
Commodore 64 owners is an American
game incorporating eight sports events

REPEAT PERFORMANCE We show how
to write some new control structures in LOGO
and how to exploit the language’s recursive
abilities

INPUT DEVICE TO INTEGER A weekly
glossary of computing terms

PROGRAMMING PROJECTS

TAKE YOUR PICK We progress with
the development of our adventure game by
developing the routines that enable players
to pick up and carry objects around

MACHINE CODE

OPERATING PRINCIPLES We begin a
new Series in which we explain in detail the
different parts of the operating systems of all
the popular micros

INSIDE JOB Our project to build our own
floor robot continues as we connect the
necessary plugs to the circuit board

REFERENCE CARD We list further
extracts from the 6502 programmers’
reference card

DON’T VAT THE PRESS
There are strong reasons to believe the
Chancellor of the Exchequer is planning to
impose VAT on your magazine.
such a move would turn the clock back 130
years — the last tax on newspapers and
journals was repealed in 1855. Since then ‘No
tax on knowledge’ has been a principle
agreed by all Governments, even in the darkest
days of war.
A free Press is a tax-free Press.
No Government should be given the power to
impose financial pressure on a Press it may
not like.
Tell your MP to say ‘NO’ to any tax on reading.

Issued by the Periodical Publishers Association, London

856

INSIDE
BACK

COVER
COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH SHOT AT ‘192’ KENSINGTON PARK RD, W.11

In this part of our robotics series we turn our
attention to the higher priced robots and
robot arms available. Two _ distinct
categories emerge: robots that are used as
teaching aids to demonstrate the principles
of robotics, and those that represent the
state of the art of modern robot design.

Many of the robots that we discuss in this article
are expensive — some cost over £1,000 — but they
do not qualify as industrial robots and are
designed for both home and school use. The first
group that we will look at comprises robots that are
engineered to a high standard and embody many
of the features of industrial robot arms. The main
difference between these arms and industrial arms
is that most of the arms mentioned here are
designed for educational use and are used to teach
the principles of robotics.

Typically, the main differences between these
arms and their industrial counterparts is that these
are smaller and less able to handle large objects. In
many cases, of course, the educational market
overlaps with the industrial market because if the
industrial application requires only a relatively

a

TOPPING THE BILL

small, light arm then many of these arms would
suffice. For instance, an industrial robot might well
be needed to handle large steel ingots weighing
several hundred kilograms. Equally, an industrial
robot might be needed to assemble parts on a
printed circuit board — a task that does not require
alarge and powerful arm. So, the robot arms in this
category can be regarded as having the potential to
carry out perfectly serious applications as well as
being educational. |

The second category that we shall be looking at
concerns those robots whose design incorporates
the very latest in contemporary robotic thinking.
Many of them will be equipped with the sensory
powers that we have discussed in previous articles
‘in this series.

ARMS TO EDUCATE
A reasonably-priced robot arm is the Mentor from
Cybernetic Applications. This sells for £345 in kit
form, has six degrees of freedom (waist, shoulder,
elbow and three axes of rotation at the wrist) and is
powered by electric motors. It can be controlled
from the BBC Micro, Commodore Vic-20 or the
Sinclair Spectrum.

From the same company, but at the other end of

IAN McKINNELL.

At Your Service
Because the Hero is both mobile
and has a gripper, it can bring
its owner a Cup Of tea in the
morning (provided of course
‘that the bedroom is not upstairs
from the kitchen!) Our
photograph shows the Hero and
the Mentor enjoying a cup of tea

THE HOME COMPUTER ADVANCED COURSE 841

APPLICATION / ROBOTICS

the price range, are the Neptune 1 and Neptune 2,
costing £1,250 and £1,725 in kit form. These arms

— although they use water and not the normal
hydraulic fluid used in most robots of this type.

will lift up to 2.5kg and are hydraulically powered These arms can also be controlled by the BBC

sn
aia uh xe

Arm

Educational

Potentiometer records
position, gripper can sense
how far itis closed _

6: waist, shoulder, elbow and

wrist elevation, wrist roll, and

gripper

Hydraulic: water pump driven
from mains

BBC Micro, Spectrum, Vic-20

Cybernetic Applications Lid,
West Portway Industrial
Estate, Andover, Hampshire
SP10 3NN

842 THE HOME COMPUTER ADVANCED COURSE

Potentiometer records

position, gripper can sense
_how far itis closed

6: waist, shoulder, elbow and

wrist elevation, wrist roll and

gripper

Floor robot

Educational/experimental

Ultrasonic, allowing it to
detect motion. Sensors detect
200 levels of light and sound.
Tactile sensors on the gripper

4: shoulder, elbow, wrist and
gripper

Rechargeable batteries

Using a cross assembler, the
Hero can be attached to any
micro with a serial port

Zenith Data Systems, Bristol
Road, Gloucester, GL2 6EE

Micro, Commodore Vic-20 and _ Sinclair
Spectrum. The Neptune 2 has two different
speeds of operation; this is useful as it can be made

- to move quickly when large arm movements are
required and then slowed down for more precise
work.

Powertran Cybernetics makes the Genesis

P101, which has six degrees of freedom and sells
for £750 in kit form. This model is hydraulically
powered and comes with a controller box for
programming the robot, together with a standard
RS232 interface, which should enable it to be
connected to most computers. This arm also
comes preassembled and tested, but the price rises
accordingly to £1,750.
An interesting mid-price arm is the Cyber 310

from Cyber Robotics. This is sold preassembled
and costs £650. Versions of the robot are available
for the BBC Micro, Jupiter Ace, Apple II,
Commodore PET 3000/4000 and 8000 and the
Hector HRX. It is powered by stepper motors and
has a lifting capacity of only 250g, which makes it
fairly lightweight, but the range of options it offers
is impressive. As well as five degrees of freedom, it
has user-controlled acceleration and deceleration
of the speed of the arm, which means that it can
simulate the way in which a human arm

altering its speed constantly as the nature of the
task changes and simulating the effects of inertia.
All the joints may be moved simultaneously and
the position of the arm specified either as a relative
position (for example, by instructing the arm to
move forwards x units from its current position) or
as an absolute position (by specifying a move to
some point with reference to a ‘home’ position). It
can be programmed in Basic and also in a version
of FoRTH, known as Robo FortH, developed by
Cyber Robotics.

Moving right up in price we come to the
HRA933 and HRA934_ from _ Feedback
Instruments. These cost £2,195 and £2,726
respectively and are sold ready-assembled. Both
are hydraulically powered arms with five degrees
of freedom and are capable of lifting 1.35kg with a
positioning accuracy of 3mm. As well as position
sensors for the arm joints, the arms also have
tactile sensors in their end effectors. These sensors
indicate when they have picked something up and
enable the arm to control the force applied when
picking up objects. Control is via an RS232
interface and specific instructions are given for
control using the Apple II, the Tandy TRS-80,
Commodore PET, AIM 65 and the MAT385.

STATE OF THE ART :
The Hero-1 robot from Zenith Data Systems sells
for £1,995 in kit form but offers some quite
outstanding facilities. It is mobile and has an arm
that makes use of a spherical co-ordinate system
(see page 661) in which the arm is able to expand
and contract telescopically. The Hero is equipped
with a large array of sensors to detect movement,
sound and light, including an ultrasonic distance
sensor that helps it avoid collisions, and a speech
synthesiser that gives the robot an unlimited
vocabulary. It also has an arm with five degrees of
freedom. The amount of assembly work involved
in constructing the Hero 1 is considerable, so you
may want it ready-made. In this case the price rises
to a staggering £2,500. }

All of these robots are, in some ways, little more
than an expensive entertainment in terms of what
they can actually do for you and, indeed, their
main use to date has been to commercial firms
who wish to use a robot for promotional purposes
— handing out leaflets on exhibition stands, or
product demonstration. However, they do
represent the most up-to-date robotic technology
available. They all use sensors in an intelligent
fashion, move about intelligently and have
intelligent arms. None of them has a vision system,
but they can speak and they can hear acoustic
signals and respond to them.

Needless to say, their price will prevent many
people from buying them, but they do remain
there as something to aspire to — something that
you might perhaps be able to match by building a
robot of your own. They also indicate the pace at
which robotics is changing: a few years ago such
robots would have been unthinkable — at any
price.

THE HOME COMPUTER ADVANCED COURSE 843

VERTICAL TAKEOFF

for specialised applications written for
people like doctors, lawyers, designers,
journalists, photographers and caterers. But
often, generalised packages can be used in a
special way, or can be customised for

and many of these applications are not readily
apparent. They have developed as a result of
creative adaptation of existing software, or the
generation of special-use software. These are said
to be ‘vertical market’ applications because they
apply to a specific group of people, such as
doctors, chemists or psychologists. In the series of
articles we begin here, we will be looking at a
number of vertical market packages that show off
interesting new facets of microcomputer usage.
The following examples will help to illustrate the
kind of problems vertical market software is
designed to solve.
A group of parents of teenage heroin addicts in

London’s West End is using Caxton Software's
BrainStorm program for planning its campaign to
spread awareness of their activities among local
doctors, social workers and law enforcement
agencies. A Kent restaurateur is using a Practicalc
spreadsheet to analyse what customers are
ordering, so that he can plan his future menus. A
Sussex houseplant nursery is using the same
program — working with four Commodore 64s —
to handle everything from its large import
project to controlling energy costs. A surgeon at
a London hospital is using the Superbase program
from Precision Software to help in his research into
the causes and cure of cancer.

Chemists throughout Britain are using
computers to comply with the new
recommendation that all labels for patients’
prescriptions must be printed, not handwritten.
Kitchen designer Alan Batton of Warrington,

_ Lancashire, uses a program — devised by a couple
of snooker-playing friends to run on a BBC Micro
— for shuffling stoves and fridges and other
kitchen fitments around on a screen-based plan of
the space available. In fact, it’s been so effective in
aiding his kitchen (and bedroom) fittings business,
‘that he has gone into partnership with the
program’s original designers to offer the system to
other retailers.

These are just a few examples of new answers to
that time-honoured query from the prospective
purchaser of anew computer: “What can it do?’ It’s
been estimated that the average computer user

844 THE HOME COMPUTER ADVANCED COURSE

SO Ne a

exploits no more than 10 per cent of the machine's
capabilities — and that may be an over-estimate.
Spending £200 or more on something that is then
limited to one end-use, whether it be playing
games or managing your accounts, is not as cost
effective as exploiting its versatility to the full.

There are two ways of doing this. One option is
to find new applications for standard software.
Mike Ford, a professional photographer in
Sheffield, uses the stock control module in the
Anagram Integrated Accounts package to
manage his library of photographs, which forces
his file copies of prints and transparencies from
past assignments to earn their keep. Similarly,
some employment agencies use Tomorrow’s
Office database for matching the needs of their
clients to the manpower available, keeping
curricula vitae data on hard disk and mailing this
out automatically. This is much cheaper than using
packages designed for the job: it costs over a
thousand pounds for AP Computer Consultants’
Body Matching and Marketing package.

CUSTOM DESIGNED
The alternative is to seek a package designed for
the special use you require. Imagine that you are a
student of theology whose study desk is over-
burdened with massive tomes, concordances,
commentaries, Bible dictionaries and the like.
Well, then you may need “The Word’ Processor
from Bible Research Systems for the IBM and
compatibles. This package includes the entire
King James translation with full search facilities
for the creation of cross-references on disk.
_ And if you are suspicious of all translations of
biblical material, you can check it out in the
original with a program called The Greek
Transliterator, which will give you the Greek
equivalent of any English word or phrase, and
display every occurrence in the English text. This
allows you to compare the various ways in which a
word has been translated. Such electronic Bible
study is not cheap, however. Those two programs
will set you back £253 each.

Let’s consider another package, which at first
would seem equally unlikely. If youre an engineer
planning storm drains and sewers, then MIDUSS
— the McMaster Interactive Design’ of
Stormwater Systems — will help you to size pipes,
channels and storage ponds, allow you to generate
hydrographs, and give screen dumps of your high
resolution graphics work. To achieve all this, you'll
need a 256K Sirius, plus nearly £750 for the
software.

Sewage systems seem to have provided
programmers with a lot of stimulus. The rugged

Husky hand-held computer is at the heart of
CAMIL — the Computer-Aided Manhole
Inspection and Location program devised in
Southampton and now being put into effect by
water authorities all over Britain. The program
allows surveyors to input data in the field and
transmit it over telephone lines to host computers,
which can then print out sewer layouts. The
program can even respond to a request to see “all
brick sewers built before 1900’ — and there’s an
awful lot of those. |

Travelling salesmen will find extremely useful
the ‘Travelling’ series of programs, which run on
another hand-held — the excellent NEC PC-
8201. In addition to basic packages like the
Travelling Writer — a word processor for writing
reports, with mailmerge and data management
capabilities — the series includes the Travelling
Project Manager, the Travelling Appointment
Manager, the Travelling Sales Manager, and —
this is most essential — the Travelling Expense
Manager.

Salesmen, too, can improve their sales
techniques with the Sales Edge module in the
Human Edge suite of programs. These are
distributed for the IBM and Apricot by Thorn
EMI. The Sales Edge module ascertains the user’s
selling strengths and weaknesses with a series of
agree/ disagree questions and answers, and, after a
similar set of questions about the client, evolves a
suggested sales strategy with ‘opening’ and
‘closing’ gambits. Again, it’s not cheap: £240. The

Vertical

Visions

CAD WORD
PROCESSING

DATABASE

complete set of Human Edge programs, including
the Management Edge, the Negotiation Edge and
the Communication Edge, costs £840.

If youre playing the money markets, then you
may be tempted to invest £1132.75 in Forexia’s
Forextend, which allows you to study and analyse
what’s happening to the dollar, the pound, the
Swiss franc, the Japanese yen and_ the
Deutschmark. The program produces 37 charts of
comparisons, relative strength indicators, interest
rates and trade-weighted indices for every day
within the time period between 1 October 1983
and the present day. A thousand pounds may
seem a lot of money to many of us, but it’s a lot less
than you could lose in ill-informed currency
speculations!

Scheduling and appointments programs are
also becoming popular. Most computers have
built-in clocks, but few of them are able to
interrupt whatever youre doing to remind you
where you should be. However, Hewlett-
Packard’s ROM-based schedule planner for their
HP-75C can do just that — with a variety of
different alarm sounds, as well.

In the next instalment of this series, we'll be
looking in detail at BrainStorm, a program that
claims to organise your thoughts in the way that
word processors organise your sentences. And,
subsequently, well be looking at software
packages for people in sales, medicine, education,
research, video, theatre and advertising, with
specific user case histories.

Market Profiles
Software is written to meet the
needs of the primary user
groups, and to sell in the major -
market sectors. The bulk of it,
therefore, comprises largely .
financial, word processing and
database packages; a fourth
area, computer-assisted design
(CAD), is of continually growing
significance. In our diagram we
illustrate these application
areas, and juxtapose them with
the needs of a representative
selection of computer users.
The vertical axis represents the
level of complexity of the
application — manual methods

- lowest, off-the-peg computer
software next and customised or
purpose-built software at the
highest level. The resulting use
profiles show clearly that
general-purpose software suits
business needs very well in
general but that specialist users
need to customise existing
packages or create their own —
irregular high-low profiles show
an unsatisfactory match
between needs and resources,
regular middle-height profiles
indicate the market's ability to
match needs and customers

The Applications Hierarchy

aoa LhaworbP =

FORECASTING/
ACCOUNTING

THE HOME COMPUTER ADVANCED COURSE 845

" FINANCIAL

ADMINISTRATIVE

MANUAL SYSTEMS

MANUAL/MECHANICAL SYSTEMS

COMMERCIAL PACKAGES

CUSTOMISED GENERAL-PURPOSE SOFTWARE

SPECIAL -PURPOSE COMMERCIAL PACKAGES

COMMISSIONED SPECIAL PURPOSE PACKAGES

WW EDUCATIONAL

DOMESTIC

ENTERTAINMENT

PROFESSIONAL

KEVIN JONES

TAKE YOUR PICK

draw up a map of the imaginary adventure
world of our game (see page 766). On this
map, we positioned objects that will be of
use to the player. Here we show you how to
develop the routines needed to allow players
to pick up and carry the objects around.

command analysis and designated a group of
‘normal’ commands (see page 813). Included in
this group were the commands TAKE and DROP,
together with their variations PICK and PUT. Once
the appropriate command has been recognised we
can construct the routines that obey the
command. We will first consider TAKE.

846 THE HOME COMPUTER ADVANCED COURSE

To understand the methods employed by the
TAKE routine, let’s recap on the way that the
prograin keeps track of objects within the
adventure world. In the first section of the project
we designed DATA statements for each location that
contained location descriptions, the names of
objects present and inforniation about the possible
exits. After the data is read in, the array IVS(,) (used
to store the object data for Haunted Forest) has the
following contents:

N —_IVS(N1)—sAVS(N,2)
1 GUN 10
2 LAMP 9
3 KEY 5

The first column of the array holds the object
name, while the second contains its initial location
number on the adventure world map. During the
description of any location, the second column of
this array is scanned to see if any of the objects are
at the player’s current location, P. When the player
wishes to take an object from a location, using a
command of the format TAKE THE OBJECT, several
factors must be considered:

e Is the object in the command valid; in other
words, does it appear in the inventory array, IVS(,)?
e Is the object present at the player’s current
location?
e Does the player already have the full quota of
objects allowed by the game’s rules?

If all of these considerations can be answered
satisfactorily then the player may take the object.
This involves adding the object description to the
player’s personal object array, ICS(), and deleting
the position marker from the relevant entry in
IVS(,). Note that the object name does not have to
be deleted. If we use a position marker of —1 for
each object that has been picked up and carried,
then such objects will not appear in location
descriptions.It would be rather odd to pick up the

_GUN from location 10, move to location 9 and then
back to location 10, finding on your return that the
GUN was still there. Thus the array IVS(,) keeps a
record of the positions of all objects not being
carried by the player. ‘The flowchart for the TAKE
routine shows the simple logic that must be
applied.

3700 REM *ke*k TAKE S/R kx ex

3710 GOSUB 53@@:REM IS OBJECT VALID

3720 IF F=@ THEN SN#="THERE IS NO "+hW$:GOSUBS500:

RETURN

3730 OV=F:GOSUBS45@0:REM CHECK INVENTORY

374@ IF HF=1 THEN SN#="YOU ALREADY HAVE THE "+I1V%

€F,1):GOSUBS500: RETURN

3750 :

3755 REM **x IS OBJECT HERE ? xx

3760 IF VALCIVS(F,2))9<>P THEN SN®=IVSCF,1>+" IS

NOT HERE": GOSUBS50@: RETURN

4)

3770 :
3780 REM ** ADD OBJECT TO LIST xx
3738 A=08
360@ FOR J=1 To 2
381@ IF ICS¢J>2="" THEN ICSC J>=IVS(F,1).'AF=1:J=2
3820 NEXT J
3830 :
3840 REM **x FULL QUOTA xx
385@ IF AF=@ THEN PRINT"YOQU ALREADY HAVE TWO

OBJECTS": RETURN
3860 :
3870 SNS="YOU TAKE THE "+I1V#(F,1)2!:GOSUB5500
3880 IV$(F,2)="-1"!:REM DELETE INVENTORY ENTRY
3890 RETURN

Let’s now look at each of the three tests separately.

THE VALIDITY TEST
The most important and complicated of the three
tests is the validity test. In its simplest form this could
be a routine that just took the second part of the split
command and compared it with each of the
components of the inventory array, IVS(,). However,
if this was the case, the TAKE command would be
limited to the rigorous structure of TAKE OBJECT.
Even variations such as TAKE THE GUN would be
unacceptable as the routine would attempt to match
THE GUN with the inventory, rather than just GUN. To
allow flexibility in the command structure of TAKE we — |

must develop a more sophisticated method of
comparing the second part of the command given
with the object inventory.

The most obvious method of increasing flexibility
is to divide the second part of the command given
into its constituent words and then compare each in
turn with the object inventory. While overcoming
the problem outlined earlier, this method too has its
flaws. If, for example, we wanted to use a two-word
description of an object such as LARGE KNIFE, then
the command TAKE THE LARGE KNIFE would not give a
match using this method. The routine would
compare the words THE, LARGE and KNIFE separately
with the inventory list. This problem can be
overcome by making the routine even more
sophisticated. Instead of searching for an exact
match, a routine could be designed that would scan
each object description in the inventory for the
command word under examination, moving
through the object name letter by letter until a match
was found or the end of the object name was
reached. The screen shots show how this is done.

One advantage of looking for a match between
command and inventory in this way is that
shortened versions of the object word can be given in
the command. In the above example, the command
TAKE THE KNI would also make the correct match,

assuming that there were no other object names in
the inventory prior to LARGE KNIFE. with the
combination of letters KNI. If this were the case,

then an incorrect match would be made with the
earlier entry in the inventory. Problems of this type
are part of the price that must be paid for the greater
flexibility of the routine. Most incorrect matching
problems can be eliminated by careful selection of
object names. If two object names must contain the
same group of characters, or if one name is a
substring of another — such as BULL and BULLET —
then the shorter of the two names should be placed
earlier in the inventory array. In addition, different

jean! f
! Hiithi 1 i

| i

(eee eee
The validity test s
designed for use with th

TAKE routine sc
| | se statement entered wor
baton THE* : :

EM MATCH ‘KNIFE’ .
REM MATCH “KNI’

the way in whic
routine searche

found, the progra
keypress before Cc

ae DATA ¥¥*x -—=—e
LI DOOR", "LARGE ne

Reci7) foe ‘Kai TO S: LONS=DNB+ ONS NE a
RSC1PI+DNS a _
ok YOTABCO 5 # RETURN

THE HOME COMPUTER ADVANCED COURSE 847

object descriptions that contain the same words,
such as LARGE KNIFE should not be used.
5300 REM *xx*x*x VALID OBJECT S/R *x%x

3316 NNS=NNS+" "SE LN=LENCNNS) 'C=15F =8

3315 FOR K=i TO LN |

5320 IF MIDS<NN#,K,19<>" " THEN NEXT K!RETURN

5325 WS=MIDSC(NNS,C,K-C&'C=K+1

3330 LW=LEN(WS)>

5335 FOR J=1 TO 3

9340 LI=LENCIV$(J,12)2REM LENGTH OF OBJECT

5350 FOR I=1 TQ LI-LWttl

3360 IF MIDSCIVS(J,13,1,LWI=We THEN FHJiL=LiiJ=3:K

=LN

9370 NEXT I,J,-K

5380 RETURN

Having found a match, the routine sets the variable F
to the inventory array element that corresponds to
the object in the command. If no match is found,
then the value of F will remain zero, indicating that
no such object exists in the game.

IS THE OBJECT PRESENT?
Once the array number of the object has been
established by the validity test subroutine, the
location of the object can easily be checked against
the current location variable, P. The object to be
picked up is in IVS(F1) and its location is in IV$(F,2).
Line 3760 of the TAKE routine in Haunted Forest
checks this value against that of P. However, the
error message generated — ‘OBJECT is not here’ —
may not be strictly correct. The object may be
present in the current location, but held by the
player. Thus, a check should be made to see if the
player is carrying the object in question before the
error message is made. If so, a different error
message (such as “You already have the OBJECT’)
can be output. The following subroutine checks
the main inventory and sets a flag, HF, to one if the
object is being carried by the player. This
condition is indicated by a -1 in the relevant
element of the array.

39458 REM *x*kx* IS OBJECT HELD S/R xxx

5460 HF=0@

S470 IF IVS¢tOV,2)="-1" THEN HF=1

5486 RETURN

CHECKING THE PLAYER’S LIST
These two related tasks of checking to see if the
player’s list is full and adding to the list can be
combined. Using the array ICS() to hold the objects
carried, a FOR...NEXT loop can be used to locate
the first free space in the array so that the new
object may be entered. In the rules of Haunted
Forest, a player may carry two objects only at any
one time. Thus, the FOR...NEXT loop used is
executed twice only. If a free space is found then
the new object name is entered; if not then a
message to the effect that the player is already
carrying two objects is output to the screen.

The final task is to delete the position marker of
the object just picked up from the inventory. This is
simply done by setting VS (F 2) to —1,

THE LIST COMMAND
Now that the player has the ability to pick up
objects, we can include another command. It is
often useful for the player to be able to see what
objects are being carried. For example, if the
player comes across a locked door he may have

848 THE HOME COMPUTER ADVANCED COURSE

forgotten that he picked up a key 20 moves before.
Allowing the player to list the objects carried
serves as a useful memory jogger. The code
required is simple: a FOR...NEXT loop is used to
display the contents of the player’s object
inventory, ICS().

4100 REM xx*x* LIST CARRIED INVENTORY *x*x*

4116 PRINT"GBJECTS HELD: "

4120 FOR I=1 TO 2

4136 PRINT" "; ICBC)

41490 NEXT I

41356 RETURN

x

OSBORNE ENCORE / HARDWARE

OSBORNE ON SHOW
The US-based Osborne Corporation,
manufacturer of the _ first ‘portable’
microcomputer, the Osborne-1, has
recovered from its financial problems to
produce a new machine. Here we look at the
Osborne Encore — the latest in a long line of
IBM PC-compatibles.

As the first all-in-one portable computer, the
Osborne-1 started a_ revolution § in
microcomputing. Equipped with a built-in
monitor, twin disk drives and interfaces to
modems and printers, the machine was the first
self-contained CP/M _ business computer.
Although the designation ‘portable’ was perhaps
something of an overstatement (the Osborne-1
weighed 10.5kg), other manufacturers were quick
to see the potential of the new machine and the
Osborne Corporation, instead of being in a field of
its own, found itself surrounded by competitors.

The crunch for the new company came in 1981
when IBM announced the launch of the first
model in its Personal Computer range. The new
machine quickly swept all before it as businessmen
rushed to buy from the well-known giant of the
computer industry. Osborne, together with many
of its competitors, swiftly announced the
imminent launch of a PC-compatible machine.
This new model, the Osborne Executive, was to be
equipped with dual processors, allowing it to run
both CP/M and MS-DOS software. However,
because of the worldwide shortage of 8086
microprocessors, the machine appeared without
the chip needed to make it PC-compatible. As a
result, sales of Osborne machines fell dramatically,
and Osborne was forced to file for voluntary
liquidation in the summer of 1983. But Osborne
managed to survive and the new-look company is
now a research and development operation

_ similar to Sinclair Research in the UK.

A new machine from the company — the
Osborne Encore — has now finally arrived. It is a
bold gamble from a firm that has barely managed
to stay in business. Although not quite so compact
as machines like the Epson PX-8, the Encore’s
significance lies in its attempts to bridge the gap
between the lap-held and desk-top sections of the
business market.

Weighing in at around six kilograms, the Encore
is considerably less of a burden than its
predecessor. The keyboard folds up into the
screen, making a compact box that is roughly the
size of three telephone directories. The casing is in
sturdy blue plastic and the keyboard is held in
place by a pair of clips.

The keyboard contains QWERTY typewriter
keys, above which is a plastic membrane covering
the function keys and the ‘icons’ (symbols that
represent the built-in programs). On the main
body of the computer itself is a 23.7cm by 8cm
liquid crystal display screen.

The keyboard has a solid professional feel to it,
with the control keys on either side of the keyboard
and four cursor keys in the bottom right-hand
corner. The design of the keyboard is very
cramped, and this is, no doubt, a result of trying to
fit all the features of the IBM PC into such a
confined space. On the right-hand side of the IBM
there is a separate numeric keypad that performs
calculator functions. To maintain compatibility on
the Encore, these keys have been incorporated
onto the main body of the keyboard. The
calculator functions are marked in blue, in
contrast to the white labelling of the standard
alphanumeric keys. The calculator is accessed,
like the other built-in programs on the Encore, by
pressing the appropriate icon on the panel above
the keyboard. Encore icons represent the
calculator, modem, disk and calendar routines.

The touch panel is not so well designed and
detracts from the overall professional feel of the
keyboard. The function keys (which on the PC are
located separately to the left of the keyboard) have
the same sort of feel to them as the ZX81
keyboard. Although one can feel the bubble

Compact Package
The Osborne Encore is one of
the first IBM-compatible
machines to be fitted with an
LCD display instead of the
standard cathode ray tube.
When not in use, the keyboard
folds up onto the screen,
making a very compact package
that can be carried with the
shoulder strap provided

STEVENS

x=
(=)

THE HOME COMPUTER ADVANCED COURSE 849

HARDWARE OSSORNE ENCORE

membrane ‘pop’ underneath the panel, the keys
lack the sureness of touch of a proper keyboard.

By incorporating an LCD screen, the designers
have made the greatest savings in power
consumption, since a liquid crystal dispiay uses far
less electricity than the usual cathode ray tube. It is
here that the greatest problems with PC
compatibility lie. It is not thatan LCD screen lacks
colours, as these can be easily substituted by
varying the graphics shading; it is the size of the
screen itself that is the major drawback.

The normal IBM screen-has a text resolution of
80 by 25 characters but, because of development
problems encountered by the screen’s Japanese
manufacturers in producing the equivalent LCD
display, Osborne has been forced to introduce the
Encore with a 80 by 16 display. This means that
many packages written for the IBM will be
unusable on the Encore. This is not a problem for
programs that can be scrolled, but on packages
where the display is ‘paged’ the user could run into
serious difficulties, especially as prompts are
generally shown at the bottom of a screen.

On the right-hand side of the computer,
provision is made for a pair of 54in floppy disk
drives, although the standard model will be
equipped with a single drive only. On the opposite
side is the power socket for the transformer, an
on/off switch, a knob to adjust the contrast of the
screen, and the battery housing, which can hold a
special nickel cadmium battery pack to enable the
machine to be run without access to a power point.

CONNECTING UP
At the rear of the Encore are the I/O ports.
Reading from left to right, these comprise a
telephone jack that connects to the Encore’s built-
in modem, a Centronics port to interface with a
printer and an RS-232 serial port to connect with
devices such as serial printers and modems.

To boot the MS-DOS system disk, you simply
press the disk icon on the touch pad. The inbuilt
programs can be run at any time, no matter what
program is currently being used in the disk drive.

All IBM program disks that were loaded into
the Encore were read by the computer. However,
the screen restrictions made it difficult to detect
whether the programs were running properly as
many of the commands were entered ‘blind’.
Among the programs that the Encore successfully
managed to execute was Lotus 1-2-3 — a
notoriously difficult program for a compatible to
run because of the unorthodox way in which the
program accesses the IBM’s built-in routines.

It is hard to tell if the Encore will prove to be as
successful a machine as the Osborne-1. The screen
takes some getting used to since, like all LCD
displays, it needs strong light to produce
sufficiently readable characters. This is not too
much of a problem on lap-held machines with
fairly large print, but the Encore’s type is about
half the size and it is doubtful whether many
business customers will wish to take the time to get
used to the display.

850 THE HOME COMPUTER ADVANCED COURSE

OSBORNE ENCORL HARDWARE

- Main PCB Cs
This circuit boardshows
evidence of the dense packing
that is necessary to fit the 912.
Kbytes of memory and other
features into a small space

ao. fF

eeeres

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 851

Input Device
The mouse is an attempt to
Create an input device that is
easier to use, particularly for
novices to the standard
typewriter keyboard

CHRIS STEVENS |

INPUT DEVICE
An input device feeds information, in the form of
digital electrical signals, into a computer or some
other processor-based system. The most
commonly-used input device is the keyboard,
although other methods, such as speech input and
the hand-held mouse, are becoming increasingly
popular. Other input systems include light pens,
graphics tablets and, of course, the joystick. Many
mainframe computers use paper tape and punch
card readers to input data.

INPUT/OUTPUT
Input/Output (1/O) is the part of a computer
system that handles the transfer of information to
and from the central processing unit. Without a
system of input/output, the CPU would be
useless, since it would lack any communication
with the outside world. The major purpose of
input/output is to allow users to communicate
with the processor.

The primary function of an I/O system, then, is
to translate signals from the outside world into a
form of data that can be understood by the CPU.
However, this is only a part of the job of input/
output. The system must also decide which of the
several possible external devices (keyboard,
joystick, printer, etc.)is being used at the time, and
whether data is being written to or read from that
device. Clearly, input/output tasks require a lot of
attention — particularly if you consider external
devices such as televisions, which have displays
that need to be constantly updated. Therefore,
most computers have a separate I/O chip set aside
specifically to perform these tasks.

Input/output is most commonly associated
with mass storage devices that can be used for
either input or output, such as cassette tape decks ©
and floppy disk drives.

INSTRUCTION
An instruction is a group of characters or digits
that specifies an operation to be carried out by
the computer. An instruction consists of an
operation code (op-code), which is the action to be
performed, and an operand, the data on which the
operation is to be performed or its address. For
example, in the instruction LDY 8, the op-code is
LDY and the operand is 8.

Instructions can be grouped into three different
types; arithmetic instructions, which perform

852 THE HOME COMPUTER ADVANCED COURSE

arithmetical operations such as add, subtract,
divide and multiply; Jogic instructions, which
perform logical operations such as AND or OR;
and input/output instructions, which perform
I/O operations.

INSTRUCTION COUNTER
The instruction counter (also known as the
‘program counter’ or the ‘current address register’)
is a register that is normally found in the CPU,
which holds the memory address of the current
instruction being executed. As the execution of a
program proceeds, the instruction counter is
added to in single steps, continually updating the
address held as it moves through the sequence of
instructions.

When the program encounters a branch or
jump instruction, the instruction counter will have
its contents altered by the operation. If this is a
branch command, the current address held in the
instruction counter will be PUSHed onto the stack,
and the new address placed in the instruction
counter. At the end of the subroutine, the address
will be PULLed off the stack and placed back in the
instruction counter. This will usually be done
automatically by the processor and there is no
need for the programmer to update the instruction
counter manually

INSTRUCTION SET
The instruction set is the list of instructions that a
given microprocessor is able to perform. This is the
irreducible set of instructions from which all other
higher-level operations, such as BASIC commands,
can be constructed. The instruction set is burned
into the ROM on construction, and the extent and
power of the instruction set can, therefore, vary
according to the architecture of the chip itself. An
instruction set should include operations to access
and manipulate the contents of the registers and
the accumulator. There should also be provision
for branching — both conditional and non-
conditional. Finally, there should be a number of
instructions set aside to test and clear the status
flags.

INTEGER
An integer, also known as a ‘whole number’, is a
number that contains no fractional element. An
integer can be positive, negative or zero. For
example, 56, —43 and 0 are all integers, but 3.8,
—2.001 and 3Y, are not.
An integer is not recognised as such by a

computer, it is simply that we interpret it that way.
For example, taking the eight-bit binary pattern
10000001, we can look on it in several different
ways:

final ins
section of our series On LOGO programming.
Here we show you how to add new control
structures to the language, and explain how
to write procedures that can themselves

of a procedure. This can be used to add new
control structures to the language as and when
they are required. So we could define a WHILE
procedure as follows:

TO WHILE :CONDITION :ACTION
IF NOT (RUN : CONDITION) THEN STOP
RUN :ACTION

_ WHILE :CONDITION :ACTION
END

Here’s an example of how we could use it. POWER
prints all the powers of its input below 1000:

TO POWER :X
MAKE “P :X
WHILE [:P < 1000] [PRINT :P MAKE “P :P * :X]

END

Control structures, such as WHILE, REPEAT and
FOR, are common in other languages, but they are
not really necessary in Loco. A more natural way
to write POWER in Loco would be:

TO POWER :P
IF NOT :P < 1000 THEN STOP
PRINT :P
POWER P* :P

END

REPEAT is provided in all versions of LOGO, but it is
not strictly necessary, since you could define an
equivalent word, REPT, in the following way:

TO REPT :NO :LIST
IF :NO=0 THEN STOP
RUN :LIST
REPT :NO-1 :LIST

END

RUN is an extremely useful primitive for more
advanced Loco work. A program can assemble a
list and then pass it to RUN to have it obeyed. We'll
see an example of this shortly.

TAKING PROCEDURES APART
First of all we must define a procedure to draw a
triangle in the usual way:

TO TRI
FD 50 RT 120 FD 50

RT 120 FD 50 RT 120
END

Now type PRINT TEXT “TRI. The result should be:

The text of the procedure is given as a list of lists,
where each ‘inner’ list is one line of the procedure.
To see why there is an empty list at the start, define
this replacement for addition:

TOADD:A:B .

PRINT :A+:B
END

Now PRINT TEXT “ADD will give:

[:A :B][PRINT :A+:B]

Clearly, the first list contains the inputs for the
procedure. So TEXT enables us to get inside a
procedure and find out what is there. DEFINE, on
the other hand, does the opposite: it lets us define
a procedure as a list of lists without having to go
into the editor. Now try DEFINE “L [[:A] [FD :A] [RT
90] [FD :A/ 2]] and then run L using, for example, L
30. Using DEFINE in immediate mode in this way
has no advantages over using the editor. The
advantage that DEFINE gives us is the ability of one
procedure to create another procedure.

GROWING
We are now going to develop a small system for
investigating growth. The basic commands in our
system are ASK, which selects the shape we will
deal with, and GROW, which changes the size of the
chosen shape. For example, ASK “SQUARE will
draw a square, and then GROW [* 10] will erase the
square and then redraw it with each of its sides
increased by a factor of 10. |

To keep the programs simple we will have to
accept a few restrictions on what we can do with
these commands. Firstly, the shape procedures
given as inputs to ASK may not contain REPEAT or
call subprocedures. Secondly, the system will
break down if you get negative results. Neither of
these problems is very difficult to deal with if you
should wish to improve on what we give here.

ASK works by assigning the name of the shape to
the global variable “CURRENT and then running the
procedure. It does this by creating a list of one item
— the procedure name — and then using RUN to
execute it.

TO ASK :OBJECT
HIDETURTLE
MAKE “CURRENT :OBJECT
RUN (LIST :OBJECT)

END

THE HOME COMPUTER ADVANCED COURSE 853.

Draw Me A Turtle
One cannot progress far in
LOGO without coming across
recursion, something defined in
terms of itself. We have seen
such examples as procedures
that call themselves, lists
defined in terms of lists, and
now procedures to write
procedures. With a little
imagination, it would be easy in
LOGO to create a drawing in the
style of MC Escher, using the
turtle to generate a turtle that
draws a turtle...

era a ove
oot ns aee®

* ° e

Dilctet et elete
Ho *o%e %s %o %e % eRe

SO. 6. @

e | Sees

° 4
®,? °
Se2e

° oPa%a%o
ata tet a%e”

ry
eo? o% ete

° ®
her har her Ser eet hee eae hae
ee eee ee ee ee ee Pe Pe ee be bel ee eet ee
Re

ee ee ee ee et ee 9 Op M5 94 04 94 94 ®
Pe%n% 58g?

ce 9.9. 2 0 em eo 8 ® PiSLrLetes * Ppa

ar
bat Dat ee)

COMPUTER SCIENCE/LOGO

GROW first wipes out the original drawing
(Commodore Loco uses PENCOLOR-1 for erasing) ,
then uses DEFINE to define the current procedure as
a rewritten one. The pen colour is then returned to
normal and the new shape drawn. Note that the
input to GROW is stored in the variable OPLIST —
which we will need to use later.

REWRITE.PROC splits the text up into lines and
passes them one at a time to REWRITE.LINE:

REWRITE.LINE checks along a line looking for a FD
or FORWARD. If one is found, it passes the rest of
the line over to CHANGE to deal with it.

nt Pe 0 eas aeareo are rw sore 0 oo ee eo a Pa tai eo oe ee Pe Oe Pe ee) ee oe ee Be De bet | abe ae ee bet oe be
92% or o*% a o%e%e Pee Pa ee Pe ey

@4.¢,%,?% e794 86%4%e% “at etet et e% a?

ato atere
e e : .
ea Pe be ba

e*etn*o ose s este
ave Fas eee be Pt +4 be be ee be ie

e%e*%e*%e Se bt he Pe
o*a*% ote

oes fc os es ele eae
re Pe ee be eer eer

oe e8 ses
eee ee ee oe

ere toPat a tet atar ete to tet ata? esesesie oSese%s

@.e8,¢ 4%? 325?

orale
Cat ot% ate?

o% eters
LP he het hat ars

eter wt a%e
ha oe er bar)

0, 6,0, 6

°°?
a?

°

CHANGE constructs the ‘rewritten’ line. The first
item of LIST — the input to CHANGE — would have
been the input to FORWARD in the original
procedure. Say this is 50, and if OPLIST contains
[* 2], then SENTENCE FIRST :LIST :OPLIST would be
[50 * 2]. CHANGE now uses RUN to evaluate this list
(obtaining a result of 100). Finally, a list is
constructed consisting of FD, the newly evaluated
quantity and then the rewrite of the rest of the line.

COPYCAT
It is sometimes useful to be able to make a copy of
a procedure. So let’s define a procedure —
COPYDEF — so that COPYDEF “NEWNAME “OLDNAME
would define NEWNAME as a copy of OLDNAME
(OLDNAME would itself remain unaffected). An

3 o
® ee 72 ee) ®,°% aot a%a%e

°
J eet 232323! o23tzs235

eMart ete?
@5%6%5°, 8
ofate% oe @,°,°,2

ee ee)
orate rete ater ote
pat esc eg
het bet bet a) ever ate Pe Pa ee ary
or er erote erosece
ocerarete ef e tate ale oo erm atete te Pe ee ee
wear eterars
2 Oe Fete Pate oc eel e eee a ee ee ee tee D ee ea

Mo * oto te fat ete eat ote tate tate®
See
PRP ee oe oe ee Che be oe he Sel Be oe esate

. tt ee ee is sec8
ogesocece

0 oo ite teteette reecetetsecsescet om _ . We sssesgesessessese eet = tc tt”t”té“‘(‘“(‘é‘(‘aé(‘(‘(‘(‘(<‘(<“(<“‘“‘“M@“O EE =6l|)6 CEES I , =—=sx ise §«6fre Seer eres ees
IANMcKINNELL

Oma tot tn to a 8 Me” Poh hens Ae es = ee ee ier ee be oe a he ee re eee ee ee Pe >
fea te wim iota” s i : ‘ : | pe ee eee bar ee eel be Dea) e oe ee ee ee bat eee eer) oe : ; ‘
Oe ate Ma" oo? ‘ a s s Seber he tet be het be ee ee Eee oe ee ee be be LS he eee

854 THE HOME COMPUTER ADVANCED COURSE

obvious definition is: —

TO COPYDEF :NEW :OLD
DEFINE :NEW TEXT :OLD |

END

The trouble with this definition is that if OLD does
not exist then the procedure simply goes ahead
and defines NEW as nothing. It would be better to
pick up this problem and report on it. So a better
definition of COPYDEF would be:

TO COPYDEF :NEW :OLD
IF NOT PROCEDURE? :OLD THEN (PRINT
[THERE IS NO PROCEDURE] :OLD) STOP

DEFINE :NEW TEXT :OLD
END

This uses a procedure called PROCEDURE?, which
outputs TRUE if its input is a procedure, and FALSE
otherwise. PROCEDURE? and its counterpart,
PRIMITIVE?, are very useful tests, but unfortunately
they do not exist in MIT Loco. So we've developed
versions of PROCEDURE? and PRIMITIVE? that will
work on both the Apple and the Commodore
versions of LOGO:

TO PROCEDURE? :NAME
IF NUMBER? :NAME THEN OUTPUT “FALSE
IF LIST? :NAME THEN OUTPUT “FALSE
TEST WORD? :NAME
IFTRUE IF WORD? TEXT :NAME THEN OUTPUT
“FALSE ELSE IF NOT (TEXT :NAME = []) THEN
OUTPUT “TRUE

OUTPUT “FALSE
END ;

TO PRIMITIVE? :NAME
IF NUMBER? :NAME THEN OUTPUT “FALSE
IF LIST? :NAME THEN OUTPUT “FALSE
TEST WORD? :NAME
IFTRUE IF WORD? TEXT :NAME THEN OUTPUT

“TRUE ELSE OUTPUT “FALSE
END

AFTERWORD
We have now dealt with all the major features of
standard Loco, and have covered a wide area of
possible applications. If you want to read more
about the language, here are four suggested
books: |
@ Learning with Logoby Daniel Watt (McGraw-
Hill) is a wonderful introductory book, and is ideal
for using with children.
@ Logoby Harold Abelson (McGraw-Hill) is the
‘standard’ book on the language. ;
@ Turtle Geometry by Harold Abelson and
Andrea diSessa (MIT Press) takes a serious look at
turtle geometry. The maths involved is at sixth
form and college level — one of the later chapters
develops a simulator for General Relativity in
LOGO! 3
® Thinking about [TLC] Logoby John R. Allen,
Ruth E. Davis and John F. Johnson (Holt Sanders
International Editions) uses the rather
idiosyncratic TLC Loco, but the book is valuable
for its investigation of artificial intelligence themes
using LOGO.

THE HOME COMPUTER ADVANCED COURSE 855

Now that we have mounted the motors and
— built the motor driver circuit board for our

_ robot, we are in a position to connect the
motors and D plugs mounted on the robot
body to the circuit board and build a simple
interface to the computer’s user port. We
Shall also write a program to test the robot
as constructed so far.

D SOCKET

VIEWED FROM REAR

= MOTOR SPINDLE

KEVIN JONES

856 THE HOME COMPUTER ADVANCED COURSE

‘DPLUG
VIEWED FROM REAR

CONNECTIONS TO
APPROPRIATE
USER PORT

[A a, a em ee

12-WAY RIBBON CABLE

WIRE LINKS

2.1MM POWER SOCKET

—— oe

a aa
2m

20-WAY RIBBON CABLE

20-WAY IDC SOCKET

Commodore

24-WAY EDGE , /
CONNECTOR INTO COMPUTER 3 _ !

: THE HOME COMPUTER ADVANCED COURSE 857

OPERATING PRINCIPLES

The role of the operating system, or OS, is
to serve as an interface between the
programs written for a machine and its
hardware. We begin a series of articles in
which we examine the operating systems of
several popular home computers — the
BBC Micro, Sinclair Spectrum,
Commodore 64 and others. — es

An operating ae iS aera in Tite fandune
language used by the particular microprocessor
incorporated in the computer. Thus, the BBC
operating system is written in 6502 machine code
and the Spectrum OS in Z80 code.
An OS consists of a range of routines that

cover a variety of machine functions. For
example, it will contain a routine that scans the
keyboard for keypresses, something that the user
will not need to bother about when writing
software for the machine. In fact, in a good
operating system, the user should be able to

access any feature of the machine's hardware
without needing to know the exact position in the
computer’s memory or input/output map of the
routine that controls the piece of hardware in
question. This means that hardware alterations to

- the machine are more easily made, and, as long as
the OS has been altered to suit the new hardware,
any programs written on older versions of a
machine will run just as well on new versions of it.

The BBC Micro’s_ operating sysiems, for

oe

858 THE HOME COMPUTER ADVANCED COURSE

example, is very well-planned. A program written
in BBC sasic on a standard machine will run
perfectly well on a BBC Micro equipped with a
second processor — even though this is a radical
hardware alteration to the machine. The BBC OS
has gone through various stages of development
and refinement to arrive at its current state of
sophistication. Version U.1, the first to appear, has
now largely disappeared from circulation. It was
made up of four EPROM chips, but lacked
versatility and, in particular, could not support
disk drives. Version 1.0, however, was able to
support disks. It consisted of two eight-Kbyte
chips on a small circuit board that fitted inside the
machine. Version 1.2, the current version, is
found in most BBC ‘Micros in use today. A
variant of this version — 1.2(US) — is designed
for machines on the American market.

You can find out what version your machine
contains by typing the command *FXO and then
pressing Return. The version number of the OS
will then be printed on the screen. The command
*HELP will also return the OS version number, as
well as listing to the screen the names of the ROM
chips in the machine.

WHAT THE BBC OS DOES
The tasks the BBC operating system performs
can be grouped into four main categories.

1. Input Routines: These routines accept
information into the computer from what is called

LIZ DIXON

a I ——

the ‘current input stream’. This is normally the
keyboard, but other input streams are the RS423
interface and the current filing system — the latter
is accessed via the use of the *EXEC command.
The major OS routine that deals with input from
all these sources is called OSRDCH, which stands

for OS ReaD CHaracter.
2. Output And Display Routines: These routines
handle output from the computer; in the BBC
microcomputer there are a variety of output
streams that can be selected as the current output
stream, such as the television display, printer,
RS423 interface and, using the “SPOOL
command, the current filing system. As well as
being responsible for printing or otherwise

- outputting data, the OS display routines are also
involved with tasks such as the control of the
6845 display chip in the computer and the use of
user defined characters, to name but two of the
extra functions of these routines. The OS calls
used are OSWRCH (for OS WRite CHaracter),
OSASCII and OSNEWL.
3. Filing Systems: Any operating system must
offer the user a means of saving the contents of
computer memory to a more permanent
medium. The section of the OS that deals with
such transactions is called the ‘currently selected
filing system’, and on the BBC we have the choice
of tape, disk, Econet, ROM or telesoftware. The
OS filing routines can make use of additional
routines in ROM that instruct the OS to deal with
the hardware associated with a particular filing
system.

To enable simple interfacing of magnetic
storage media via paged filing system ROMs, a
number of standard OS routines are provided to
deal with file-handling. These include routines for
writing or reading whole files, getting or putting
single bytes from an open file and reading or
writing specified groups of bytes to or from a file.
The seven operating system calls concerned with
filing each use a vector to point to the relevant
routine in the cassette filing system. If a paged
filing system ROM is fitted, it can dovetail with
existing BAsIc or Assembly language file
processing programs by simply changing these
vectors to point to its own ROM routines. One
ROM of this type is the DFS ROM that allows
the BBC Micro to use floppy disk drives.
4, Interrupts: An interrupt is basically a signal
generated in either software or hardware that tells
the CPU to stop what it’s currently doing and
perform a task that requires immediate attention.
After doing this, the CPU then resumes its
task as if nothing had happened. In the BBC,
there are a variety of interrupt-driven facilities
that the user can gain access to via the OS.

In addition to these four main areas, there are two
vitally important OS calls that deal with a lot of
different functions of the machine. These are
called OSBYTE and OSWORD, and are used to
control the sound chip, the break key action, and
similar things.

WHY USE OS CALLS?
In most cases, information about the internal
arrangement of a computer’s memory and
hardware becomes available (legal injunctions
permitting) within a few months of the release of
the machine. If we know these details, why should
we bother using operating system calls? Why not
simply access the devices or memory directly?

Part of the answer to this question was
mentioned at the beginning of this article: using
OS calls offers you some protection from
hardware or configuration changes made to the
machine by the manufacturer. In a similar
fashion, calling routines by using their addresses
within the ROM will cause problems should the
ROM be altered; if you access ROM routines
through the appropriate OS calls then you will be
protected from this problem.

The instructions below will, in a standard BBC
Micro, write the value 200 to the BBC user port
that is at address &FE60.

?&FE60=200

If a second processor is added to the computer,
however, this routine will not send the value to
the user port, but will write the value to a memory
location in the second processor. By using the
appropriate OS call we can get round this
problem; the OS call will know how to write the
value to the user port whether or not the second
processor is connected. The OS call for this is:

*FX 151,96,200

This call is one of several that can be used to
access areas of the BBC, such as the user versatile
interface adaptor (VIA), the system VIA and the
1MHz bus.

Furthermore, why re-invent the wheel? If a
routine to perform a particular function already
exists within the machine, then why bother to go
directly to the ROM routines? The chances are
that the OS call will be more efficient than your
direct access of the various routines involved in
the OS call.

The only really good reasons for directly
accessing memory or hardware devices are if you
require speed of access or if an OS call doesn’t
exist to do the job. If speed is vital then direct
access is often faster than going through the OS
routines. However, it is still rather tricky to access
the machine directly in this way, and we should
take care in doing so — always remembering that
programs that work on one particular machine
may not work on other machines with different
OS or hardware connected. This kind of problem
is associated more with the BBC OS and the
number of changes that it has undergone in its life
time, than with the Spectrum, which has had the
same OS throughout its history. In the next
instalment of this series, we will begin to look at
the BBC OS routines in more detail. Our
discussion of the Spectrum OS, and other
machines, will follow later in the course.

THE HOME COMPUTER ADVANCED COURSE 859

Up The Pole
The quality of Summer Games
from Epyx is clearly seen in
these photographs. Each event
is loaded individually from disk
or tape, which allows large
amounts of hi-res data for the
backgrounds to be stored and
Becca

IAN McKINNELL

The 1984 Olympic Games in Los ‘Angeles
generated a lot of interest in software based
on competitive sports. Although some of
these packages have originated in the UK
(Daley Thompson’s Decathlon is a_ recent
chart-topper), most of them — such as the
package we look at here, called Summer
Games - — come > from the US. |

Summer Games from Epyx is marketed in the
United Kingdom by Quicksilva. The package
includes eight spoxiseewents — from athletics

rostrum and lights
released into the sky.
the opening ceremon

package as a whole.

sprite facilities. The music, whi
example of what can be achieved using the
Commodore 64’s SID (sound interface device)
chip, makes good use of the three available
oscillators. The general impression is that the
program exploits the capabilities of the 64 to the
full, however.

860 THE HOME COMPUTER ADVANCED COURSE

Se . ‘ "a ane n oan ee NE _——EeeV3_

Players can choose to compete in all of the
events, one of the events, practise an event or see a
list of the world records in each event. There is also
an option to allow one or two joysticks to be used,
which lets the players compete directly against
each other in the swimming and running events
without the need for a computer pacemaker.

The first of the eight events is the pole vault,
which is perhaps the most difficult of all. The
players compete in turn, responding to a series of
prompts from the computer. After the lowest bar
height of four metres is set, the player is asked

Cat gt tae If the

4i-second

stration of the kind

e considered while
een have to be fully

This sequence is a g00¢
parameters that have t
ding. Not only does the

and athlete e right angle and position for a
successful jump. Throughout this, the user must
not notice that these actions are being performed.

After each event, a table is drawn up showing
the medals awarded and the winning country’s
national anthem is played. The computer then
loads the next event. The fact that each event is
loaded separately shows how much code is
required to run each event.

The events that follow are the high diving and
gymnastics. Here, the player must manipulate the
joystick to produce a smooth dive or vault, making
sure to finish with a smooth entry into the water, or
land carefully on the mat. The computer then
evaluates the performance.

DATABASE
_. Here, courtesy of Oric Products International, we publish the 6502 programmers’ reference card

JUMP TO SUBROUTINE

LOAD ACCUMULATOR

LOAD REG-X

LOAD REG-Y

LOGICAL SHIFT RIGHT

NO OPERATION

INCLUSIVE OR ACCUMULATOR

PUSH A ONTO STACK

PUSH P-REGISTER ONTO

STACK

PULL ACCUMULATOR FROM

STACK

PULL P-REGISTER FROM

STACK

ROTATE LEFT ONE BIT

ROTATE RIGHT ONE BIT

RETURN FROM INTERRUPT

RETURN FROM SUBROUTINE

SUBTRACT WITH CARRY

SET CARRY

SET DECIMAL

SET INTERRUPT MASK

(DISABLE)

STORE ACCUMULATOR

STORE REG-X

STORE REG-Y

TRANSFER A TO X

TRANSFER A TO Y

TRANSFER S TO X

TRANSFER X TOA

TRANSFER X TO S

TRANSFER Y TO A

L-PAGE | INDIRECT | INDIRECT

Y X Y
P-REGISTER z

vs ol ze

KK De EX

I SOK OK

>a > < KM

